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Abstract

the intersections of the nonnegative orthant in E" with pairs of com-~
plementary orthogonal subspaces are investigated. Applications to linear
inequalities and linear programming are then made by using Fredholm's

alternative theorem.

Introduction

The theory of linear inequalities, the classic reference on which is
(17], -1-/is closely related to the theory of linear equations, 2/ This relation
is the subject of the present paper., We show that the main results in the
theory of linear inequalities (in finite dimensional vector spaces over arbi-
trary ordered fields) follow from two basic facts: (2) Theorem 4 below which
is an elementary property of the intersections of the nonnegative orthant
with pairs of complementary orthogonal subspaces, 3/ b) Fredholm's
"alternative theorem." &/ Thus new proofs, valid in arbitrary ordered
fields, are given for some well-known theorems in [18] [13] [2] and
[{3] (corollaries 7,8 and 9 below) and for the duality theorem of linear

programming 5/ (remark 10 below),

1/ See also [1}], [8] and the bibliography in [16]. pp. 305-322.
2/ E.g., [15] and [8], § 16.

3/ Studied earlier in [5] [6] and [7].

4/ E.G., [20], p. 340,

5/ A relation between duality and orthogonality was recently given in [19].




0. Notations

The notations used in this paper are:

{x:£(x)} the set of elements x for which f(x) is true

{x} the set consisting 2{ X

¢ the empty set

¢, C respectively element and set containment

y,n- respectively set union, intersection and difference
F an arbitrary ordered field

En

the n-dimensional vector space over Z

0 the zero vector in E®

k
C{fi:i=l,....k} = {x:xeE", x= = af., aie;’. a2 0, i=l,...,k}
i=l

the cone spanned by &;:_ vectors {fi: i=l,...,k} in E®
int C{fi:i=l....,k} = {x:er“.x=i§1aifi, a7, a;>0, i=l, 000, k}
the interior of C{fi: i=1,...,k}
bdry C{fi: i-'l’ooo .k} = C{fi: i=1,-o o,k} - intC{fi: i=1pooo.k}

the boundary of C{fi: i=l,...,k}

{ei: i=ly .40, n} a fixed orthonormal base 1_:_1_151l

E: = Cle;:isL,.., n} the nonnegative orthant in E”

For x,y ¢ E® let:

x

nv

y denote x-yce E:
x 2y denote x-ch:-{e}
x>y denote x-Yy¢ intE:_l

For x,y ¢ E® let:

n
(x,y) = igl x.¥; denote the inner product of x,y .

Hxll = 'J(x,x) the norm of x
xly denote (x,y)=0

| W



For a subspace L in E" let:
x] L denote x|y forall yelL

L-L = {x: ern, x1 L}, the ortholonal complement of L

dim L : the dimension_o_f_l:

x+L={y:y¢En, y=x+t+{, L eL} atranslate ££

PL : the perpendicular projectionon L, i.e. PL= P2 = PE ,

L={x:xe¢E? PLx=x}

For an mxn matrix A over 7: let:
AT denote the transpose of A
N(A) = {x: x¢E", Ax= 6} the null space of A
R(AT) = {y:yeE", y = ATy for some ve E™} the range space of AT

1. Theorem: Let P be a perpendicular projection in E". Then the )

following are equivalent:
(i) Py =906 has no solution y> 90,

(ii) Px =x has some golution x> 0,
Proof: (3) = (ii)

Proof by induction on rank P =k, k=0,1,...,n. Since both (i) and (ii) are

false for k=0, let first P be a perpendicular projection of rank 1. R(P) ,

the subspace of all solutions of
1) Px=x xeE® 1/
is of dimension 1 and therefore representable as:

(2) R(P) = {x:x=au, a¢F , u a non-zero solution of (1)}

1/ E.g., [12],§ 41, theorem 2.



Suppose now that (ii) is false, This is possible only in two (not mutually
exclusive) cases, where {t.tj}j':=1 are the coordinates of the u in (2):

Case A: u, = 0 for some '1 <ign.

Case B: u, u, <0 for some 1<k, .1 <€ n, i,e., some two components

of u are of opposite sign,

In each case consider the vector v, given by its coordinates {v.}?

i'3=1 *°

follows:
Case A: v,=1, v.=0 for j i
u

Case B: vk=1,v1=--%(. uj=0 for j £k, L .

The vector v satisfies

(3) v20

(4) vliu.

Combining (4) and {(2) we conclude that v | R{P) and therefore satisfies -l-/
{5) Pv=90

But (3) and (5) imply (i) to be false, and thus (i) => (ii) is proved for k=1,

Suppose (i) => (ii) is true for perpendicular projections of rank k, k=l,...,n-1,

Leet P be a perpendicular projection of rank k+l, written as
(6) P = Q1 + Qz

where Ql' QZ are perpendicular projections of ranks 1,k respectively
satisfying

0= 2/
(7) Q,Q,=0=q,0, %

1/ E.g., [12], p. 146,
3/ [12], § 76, theorem 1,
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Suppose that P satisfied (i), But Py =0 if and only if Qly =0 = sz ;
hence both Ql’Qz satisfy (i) . By the induction hypothesis both Ql' Qz

satisfy (ii) . Thus there exist vectors: y >0, z >0 such that
(8) Qy =y and Q,z=2z .

The vector x =y+z is > 0, and, because of (6), (7) and (8), satisfies (1).

Thus P satisfies (ii) and the proof of (i) => (ii) is completed.

(ii) => (i)
If Px=x>0 thenfor any y290:

0 < (x,y) = (Px,y) = (x, Py)

therefore Py #60. 1/

2, Corollary: Let L.L‘L be complementary orthogonal subspaces in E".
Then the following are equivalent:

(i) LOET = {6}

(i) L0 ineE? 49

Proof: Let PLJ_ be the projection P in theorem l. Statements (i) and (ii)

are then equivalent to the corresponding statements in theorem 1.

i

Remark: A stronger result is given in theorem 4 below,

3. Corollary: Let L be a subspace in En, of dimension: dim L <n-2,
such that LnE: ={6}. Then L is contained in a subspace M , with
dim M = dim L+1 and MNET = {0} .

1/ Only the symmetry of P was used here,
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Proof: Let dimL =k, 0<k<n-2; and let HKypeoes X 1 be an orthonormal
basis of Lt with X, € L'l' Nlint E: (by corollary 2 this is always possible).
The subspace M ={L+ sz: NeF} contains L and is of

dimension: dim M=dim L+1. Since M1x and x¢int E} it follows

Remark: We have shown that any subspace L of En, with dimension < n-2,

that M nEj: = {0}

satisfying L0 E: = {8} can be extended to a subspace M, dim M =dim L+1,

and the same property. The maximal subspace HOL with HI E: = {8}

is a hyperplane,

4, Tkeorem: Let L be a subspace of El.‘ « Then the following are
equivalent:

(i) LNE} = {6}

(ii) LJ' has a basis in int E:_1

(iii) For every xe E®, {x+L}n E: is bounded, maybe empty.

Proof: The part (ii) => (i) follows from corollary 2. Also (iii) => (i)

is obvious, for if (i) is false then (iii) is false with x = 0. It remains

to prove that (i) => (ii) and (i) => (iii).

(i) => (ii)

Proof by inductionon dim L =n-k, k=0,1,...,n, The case k=0 is
trivial and the case k=1 is proved exactly as in the part: (i) => (ii) of
theorem l. Suppose that (i) => (ii) was proved for subspaces of dimension:

n-k, and let L be a subspace of dimension: dim L =n-k-1, such that

LﬂEf::{O} .




=

By corollary 3 LCM with dimM=n-k and MNE] = {6} . By the

induction hypothesis M"" has a basis in int E: s BaYy {gi ti=l,eee, k).

Let {f l1,...,n-k-1} be an orthonormal basis of L and {fi: i=l, e, ., n-k}

be an orthonormal basis of M, Consider the vector
Eet1 = Tt M8y

where XGF satisfied:
I£

\ > max -_Bllﬂl.
in-k’ i< o gl. i

The vector 141 is: (a)in int ED (b) orthogonal to Il’ oo

+ ! n-k-1
and thus in L, (c) linearly independent of Byrecer 8y e Therefore

{gp--- ’gk+1} is a basis of L+ in int E:

(i) => (iii)

Clearly it is enough to consider vectors xe L1, Let u be any vector
in L with fJull=1. Since LI'IE:_1 = {8} it follows that u must have
nonzero coordinates of opposite signs, For any xe Lt » ae X, the

vector x+tau is > 0 only if the scalar a is bounded by

x x
(9) max { max {-‘-1-}. max {'u—} < @ < min¢ min {——}. min {--i}
%20 i x<o0 % x;20 M x<0 %
>0 ui>° ui i<°

where x;, u; are the coordinates of x, u respectively, If the left hand side
in (9) exceeds the right hand side then {x+L} ﬂE:‘1 =¢ . Otherwise

x+au ¢ {x+L} ﬂE: only if K x+auli?= (%, x) + @ < » by (9), which completes
the proof.
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5. Corollary: Let L be a subspace of E® of dimension k, k=l.,,,n.

Then the following are equivalent:

(i) LNbdryE] = Clejpeeese } s 1<psk.

‘e L . . .
(ii) L' has a basis in int C{epﬂ,. .e ,en} .

(i) => (ii)
Consider Ep. the space spanned by {el, cee ,ep} as a subspace of E® , and
the quotient space of E” modulo EP: E®/EP . From (i) it follows that
EPc L. Hence in E”/EP the subspace L/EP satisfies (i) of theorem 4.
Therefore LY/EP has a basis in int(E:/Ep) = int C{e

p+1’¢-o'en} .
But L*/EP = 11 and (ii) is established.

(ii) => (i)

From (ii) it follows that C{el. .es .ep} CL and consequently (i) .

Remarks:

(a) If p =k then (ii) can be rewritten as

(ii') L-Ln E: = C{ep+lpoollen}

(b) If dim L < n-2 it can be shown as in corollary 3 that L is contained
in a subspace M with dim M=dim L+1 and M bdryE:= C{el.... .ep} R
The maximal subspace H with HDOL and Hfl bdry E: = C{el,. .o .ep} is

a hyperplane, e.g., [10], p. 316, theorem 33 (2).

6. Corollary: LetlL, L* be any pair of complementary orthogonal sub-
spaces in E™. Then there is a vector x in :lm:Ei1 such that x=y+z,

yeLNE} , ze L' NET.




Proof:
Since the case: L = E®, I¥= {6} is trivial, let dim L =1,...,n-1. Now
there are three mutually exclusive cases:

(i) LNE] = {6}

(i) LNbdryE} = C{el,...,ep} » 1<p<dimL and LNintE} = ¢

(iii)  LNintE] #¢ .

In case (i) we use corollary 2 and choose x as a vector in Lt Nint E: .

Thus x =2z andy=0.

In case (ii), corollary 5 is used to construct x as x=y + z whcre
z eLJ' nint{ep+l,....en}+ and y is any vector in intC{el....,ep} . By
remark (a) following corollary 5, if p = dim L then any vector x in intE:

can be so represented.

Case (iii) is, by corollary 2, case (i) with L, LJ' permuted.

7

7. Corollary: (Tucker [18]) Let A be any mxn matrix over 7 . Then
the following system of equations and inequalities

Ax =0 A'u 26

x26
has solutions x°, u° satisfying

ATu°+ xo >0,

et
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Proof: Follows immediately from corollary 6, by letting L = R(AT) and
using Fredholm's alternative theorem ([20], p. 340) which for a linear

operator A: E"~E™ can be stated as: R(AT) and N(A) are complementary

orthogonal subspaces in E” , e.g., [12], § 49.

Remark: This corollary is fundamental in the theories of linear inequalities
and linear programming, e.g., [18]. We proved it here as a consequence of
two facts:
(a) Corollary 6 which states a simple property of the intersections of
Ef: with arbitrary pairs of complementary orthoronal subspaces.
{(b) Fredholm's alternative theorem
E"= R(AT) @ N(A)

which is basic to the theory of linear equations.

The abundance of theorems (e.g., the Minkowski-Farkas- Weyl theorems [2]

and their consequences) which follow corollary 7, e.g., [ 18] emphasizes the

merits of a unified treatment of linear inequalities and equations, e.g., [15].

8. Corollary (Jackson [13]. Charnes-Cooper [ 2]): Let A be any mxn
matrix over 7 . Then the following are equivalent:
(i) Ax=90 has no solution x>0,
(ii) ATu> @ has solutions.
(iii) For any be¢E™ the set {x: x¢E", Ax=b, x >0} is bounded,

maybe empty.

Proof:  Setting, by Fredholm's alternative theorem, L =N(A) and Ll=K(AT)

it follows that statements (i), (ii) and (iii) are equivalent to the corresponding

statements in theorem 4.
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Remark: In the real case this theorem was proved by Jackson [13], The
part (i) ==>(iii) is close to the "opposite sign theorem'' of Charnes-Cooper
[2], [3], which states, more precisely, that (i) above is equivalent to:
(iv) The set
{x:xe¢E®, Ax=b, x2 e}
is spanned by its extreme points.

Property (iv), see [4], is not restricted to bounded sets when x is in an

infinite dimensional vector space.

9. Corollary (Tucker [18]): Let K be a skew symmetric matrix over F. l-/

Then the system of inequalities
Kw >86 w>0

has a solution w°® such that

(10) Kwl+w®>0 .

Proof: Consider the system of equations and inequalities

e (1)

R

o
by corollary 7  this system has solutions (xo) and u® such that

) x° + 1
Y K

Combining (11) and the fact that xo = -KTYO = Kyo , it follows that wo = yo«l- uo

uo>9.

satisfies (10) .

1/ Le., K=-KT,
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10. Remark: Corollary 9 was used to prove the duality theorem of linear
programming, e.g., [9] and [11] . We conclude this paper by outlining an
alternative proof which, like our other results above, rests upon the

"Fredholm alternative' theorem.

Consider the pair of dual problems

maximize ch minimize wa
Ax<b wazct
x>0 w >0

where A is an mxn ma.trixoverr ’ beEm and ceE®,

To these problems there corresponds the (m+1l) x (m+n+1) matrix:

¢ 1
B = _t v-cT ' OT
A e I Rt
b ;, A . 1

where t is in F « For any given value of t we consider the subspaces

N(Bt) and R(B'{) --wkich are complementary orthogonal by Fredholm's

theorem--and their intersections with ET+n+l :

T
a at-c'x =0
N(Bt)f]litf;"“"'n"'1 = x| : -ab+Ax+y=80
Yy 20, x,y20
Bt-bw Bt - wago
R(Bf)ﬂET+n+l = ¢|=-Pc+ AT\v : -ch+ wTA > eT .
w w2 )

The duality theorem of linear programming (as well as the ""complementary

slackness" property,[11] , which is the statement that R(B-ﬁﬂzim'nﬂ

m+n+l 1/ . .
N( BtmE + are orthogonal sets)follows now by considering the above inter-

and

sections; the keys to the whole situation being the vanishing of the scalars
a,p and the value of t, The details are left to the reader.

1/ A similar relation between duality and orthogonality was studied by
Tucker in [19] .
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